Online Labelling Strategies for Growing Neural Gas

نویسندگان

  • Oliver Beyer
  • Philipp Cimiano
چکیده

Growing neural gas (GNG) has been successfully applied to unsupervised learning problems. However, GNG-inspired approaches can also be applied to classification problems, provided they are extended with an appropriate labelling function. Most approaches along these lines have so far relied on strategies which label neurons a posteriori, after the training has been completed. As a consequence, such approaches require the training data to be stored until the labelling phase, which runs directly counter to the online nature of GNG. Thus, in order to restore the online property of classification approaches based on GNG, we present an approach in which the labelling is performed online. This online labelling strategy better matches the online nature of GNG where only neurons – but no explicit training examples – are stored. As the main contribution, we show that online labelling strategies do not deteriorate the performance compared to offline labelling strategies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DYNG: Dynamic Online Growing Neural Gas for stream data classification

In this paper we introduce Dynamic Online Growing Neural Gas (DYNG), a novel online stream data classification approach based on Online Growing Neural Gas (OGNG). DYNG exploits labelled data during processing to adapt the network structure as well as the speed of growth of the network to the requirements of the classification task. It thus speeds up learning for new classes/labels and dampens g...

متن کامل

A Solution to the Problem of Extrapolation in Car Following Modeling Using an online fuzzy Neural Network

Car following process is time-varying in essence, due to the involvement of human actions. This paper develops an adaptive technique for car following modeling in a traffic flow. The proposed technique includes an online fuzzy neural network (OFNN) which is able to adapt its rule-consequent parameters to the time-varying processes. The proposed OFNN is first trained by an growing binary tree le...

متن کامل

Online speaker diarization with a size-monitored growing neural gas algorithm

This paper proposes a method for segmenting and clustering an audio flow on the basis of speaker turns. This process, also known as speaker diarization, is of major importance in multimedia indexation. Here, we propose to realize this process online and without any prior knowledge on the number of speakers. This is done thanks to a statistical modelling of speakers based on a size-monitored gro...

متن کامل

Incremental Unsupervised Time Series Analysis Using Merge Growing Neural Gas

We propose Merge Growing Neural Gas (MGNG) as a novel unsupervised growing neural network for time series analysis. MGNG combines the state-of-the-art recursive temporal context of Merge Neural Gas (MNG) with the incremental Growing Neural Gas (GNG) and enables thereby the analysis of unbounded and possibly infinite time series in an online manner. There is no need to define the number of neuro...

متن کامل

Online Fault Detection and Isolation Method Based on Belief Rule Base for Industrial Gas Turbines

Real time and accurate fault detection has attracted an increasing attention with a growing demand for higher operational efficiency and safety of industrial gas turbines as complex engineering systems. Current methods based on condition monitoring data have drawbacks in using both expert knowledge and quantitative information for detecting faults. On account of this reason, this paper proposes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011